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Figure 3.1: A three-dimensional virtual environment. U.S. Army photo.

In three-dimensional video games and virtual environments, it is important to

be able to locate objects relative to the other objects in their environment. For

example, if the system is modeling a player driving a simulated vehicle through

a virtual war zone, it is useful to know where that vehicle is relative to various

obstacles and other players. Such nearby objects are useful for the sake of rendering

a scene or identifying targets, for example. (See Figure 3.1.)

Of course, one way to do such a reference check for some object, x, relative to

a virtual environment is to compare x to every other object in the environment. For

an environment made up of n objects, such a search would require O(n) object-

object comparisons for x; hence, doing such a search for every object, x, would

take O(n2) time, which is expensive. Such a computation for a given object x
is not taking advantage of the fact that it is likely that there are potentially large

groups of objects far from x. It would be nice to quickly dismiss such groups as

being of low interest, rather than comparing each one to x individually.

For such reasons, many three-dimensional video games and virtual environ-

ments, including the earliest versions of the game Doom, create a partitioning of

space using a binary tree, by applying a technique known as binary space parti-

tioning. To create such a partitioning, we identify a plane, P , that divides the set

of objects into two groups of roughly equal size—those objects to the left of P and

those objects to the right of P . Then, for each group, we recursively subdivide them

with other separating planes until the number of objects in each subgroup is small

enough to handle as individuals. Given such a binary space partition (or BSP) tree,

we can then locate any object in the environment simply by locating it relative to

P , and then recursively locating it with respect to the objects that fall on the same

side of P as it does. Such BSP tree partitions represent a three-dimensional envi-

ronment using the data structure we discuss in this chapter, the binary search tree,

in that a BSP tree is a binary tree that stores objects at its nodes in a way that allows

us to perform searches by making left-or-right decisions at each of its nodes.
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3.1 Searches and Updates

Suppose we are given an ordered set, S, of objects, represented as key-value pairs,

for which we would like to locate query objects, x, relative to the objects in this

set. That is, we would like to identify the nearest neighbors of x in S, namely, the

smallest object greater than x in S and the largest object smaller than x in S, if

these objects exist. One of the simplest ways of storing S in this way is to store

the elements of S in order in an array A. Such a representation would allow us, for

example, to identify the ith smallest key, simply by looking up the key of the item

stored in cell A[i]. In other words, if we needed a method, key(i), for accessing

the key of the ith smallest key-value pair, or elem(i), the element that is associated

with this key, then we could implement these methods in constant time given the

representation of S in sorted order in the array A. In addition, if we store the

elements of S in such a sorted array, A, then we know that the item at index i has a

key no smaller than keys of the items at indices less than i and no larger than keys

of the items at indices larger than i.

The Binary Search Algorithm

This observation allows us to quickly “home in” on a search key k using a variant of

the children’s game “high-low.” We call an item I of S a candidate if, at the current

stage of the search, we cannot rule out that I has key equal to k. The algorithm that

results from this strategy is known as binary search.

There are several ways to implement this strategy. The method we describe

here maintains two parameters, low and high, such that all the candidate items

have index at least low and at most high in S. Initially, low = 1 and high = n, and

we let key(i) denote the key at index i, which has elem(i) as its element. We then

compare k to the key of the median candidate, that is, the item with index

mid = ⌊(low + high)/2⌋.

We consider three cases:

• If k = key(mid), then we have found the item we were looking for, and the

search terminates successfully returning elem(mid).

• If k < key(mid), then we recur on the first half of the vector, that is, on the

range of indices from low to mid − 1.

• If k > key(mid), we recursively search the range of indices from mid + 1 to

high.

This binary search method is given in detail in Algorithm 3.2. To initiate

a search for key k on an n-item sorted array, A, indexed from 1 to n, we call

BinarySearch(A, k, 1, n).
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Algorithm BinarySearch(A, k, low, high):

Input: An ordered array, A, storing n items, whose keys are accessed with

method key(i) and whose elements are accessed with method elem(i); a

search key k; and integers low and high
Output: An element of A with key k and index between low and high, if such

an element exists, and otherwise the special element null

if low > high then

return null

else

mid ← ⌊(low + high)/2⌋
if k = key(mid) then

return elem(mid)
else if k < key(mid) then

return BinarySearch(A, k, low, mid − 1)
else

return BinarySearch(A, k,mid + 1, high)

Algorithm 3.2: Binary search in an ordered array.

We illustrate the binary search algorithm in Figure 3.3.

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low high mid

high midlow

highlow mid

low=mid=high

Figure 3.3: Example of a binary search to search for an element with key 22 in a

sorted array. For simplicity, we show the keys but not the elements.
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Analyzing the Binary Search Algorithm

Considering the running time of binary search, we observe that a constant number

of operations are executed at each recursive call. Hence, the running time is pro-

portional to the number of recursive calls performed. A crucial fact is that, with

each recursive call, the number of candidate items still to be searched in the array

A is given by the value high− low + 1. Moreover, the number of remaining candi-

dates is reduced by at least one half with each recursive call. Specifically, from the

definition of mid, the number of remaining candidates is either

(mid − 1) − low + 1 =

⌊

low + high

2

⌋

− low ≤
high − low + 1

2

or

high − (mid + 1) + 1 = high −

⌊

low + high

2

⌋

≤
high − low + 1

2
.

Initially, the number of candidate is n; after the first call to BinarySearch, it is at

most n/2; after the second call, it is at most n/4; and so on. That is, if we let a

function, T (n), represent the running time of this method, then we can characterize

the running time of the recursive binary search algorithm as follows:

T (n) ≤

{

b if n < 2
T (n/2) + b else,

where b is a constant. In general, this recurrence equation shows that the number

of candidate items remaining after each recursive call is at most n/2i. (We discuss

recurrence equations like this one in more detail in Section 11.1.) In the worst case

(unsuccessful search), the recursive calls stop when there are no more candidate

items. Hence, the maximum number of recursive calls performed is the smallest

integer m such that n/2m < 1 . In other words (recalling that we omit a logarithm’s

base when it is 2), m > log n. Thus, we have m = ⌊log n⌋+ 1, which implies that

BinarySearch(A, k, 1, n) runs in O(log n) time.

The space requirement of this solution is Θ(n), which is optimal, since we

have to store the n objects somewhere. This solution is only efficient if the set S is

static, however, that is, we don’t want to insert or delete any key-value pairs in S.

In the dynamic case, where we want to perform insertions and deletions, then such

updates take O(n) time. The reason for this poor performance in an insertion, for

instance, is due to our need to move elements in A greater than the insertion key in

order to keep all the elements in A in sorted order, similar to the methods described

in Section 2.2.1. Thus, using an ordered array to store elements to support fast

searching only makes sense for the sake of efficiency if we don’t need to perform

insertions or deletions.
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3.1.1 Binary Search Tree Definition

The data structure we discuss in this section, the binary search tree, applies the

motivation of the binary search procedure to a tree-based data structure, to support

update operations more efficiently. We define a binary search tree to be a binary

tree in which each internal node v stores an element e such that the elements stored

in the left subtree of v are less than or equal to e, and the elements stored in the

right subtree of v are greater than or equal to e. Furthermore, let us assume that

external nodes store no elements; hence, they could in fact be null or references to

a special NULL NODE object.

An inorder traversal of a binary search tree visits the elements stored in such

a tree in nondecreasing order. A binary search tree supports searching, where the

question asked at each internal node is whether the element at that node is less than,

equal to, or larger than the element being searched for.

We can use a binary search tree T to locate an element with a certain value x
by traversing down the tree T . At each internal node we compare the value of the

current node to our search element x. If the answer to the question is “smaller,”

then the search continues in the left subtree. If the answer is “equal,” then the

search terminates successfully. If the answer is “greater,” then the search continues

in the right subtree. Finally, if we reach an external node (which is empty), then the

search terminates unsuccessfully. (See Figure 3.4.)

12 36 75

25 42 62

31 90

58

Figure 3.4: A binary search tree storing integers. The thick solid path drawn with

thick lines is traversed when searching (successfully) for 36. The thick dashed path

is traversed when searching (unsuccessfully) for 70.
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3.1.2 Searching in a Binary Search Tree

Formally, a binary search tree is a binary tree, T , in which each internal node v of

T stores a key-value pair, (k, e), such that keys stored at nodes in the left subtree

of v are less than or equal to k, while keys stored at nodes in the right subtree of v
are greater than or equal to k.

In Algorithm 3.5, we give a recursive method TreeSearch, based on the above

strategy for searching in a binary search tree T . Given a search key k and a node

v of T , method TreeSearch returns a node (position) w of the subtree T (v) of T
rooted at v, such that one of the following two cases occurs:

• w is an internal node of T (v) that stores key k.

• w is an external node of T (v). All the internal nodes of T (v) that precede w
in the inorder traversal have keys smaller than k, and all the internal nodes of

T (v) that follow w in the inorder traversal have keys greater than k.

Thus, a method find(k), which returns the element associated with the key k, can

be performed on a set of key-value pairs stored in a binary search tree, T , by calling

the method TreeSearch(k, T.root()) on T . Let w be the node of T returned by

this call of the TreeSearch method. If node w is internal, we return the element

stored at w; otherwise, if w is external, then we return null.

Algorithm TreeSearch(k, v):

Input: A search key k, and a node v of a binary search tree T
Output: A node w of the subtree T (v) of T rooted at v, such that either w is an

internal node storing key k or w is the external node where an item with key

k would belong if it existed

if v is an external node then

return v
if k = key(v) then

return v
else if k < key(v) then

return TreeSearch(k, T.leftChild(v))
else

return TreeSearch(k, T.rightChild(v))

Algorithm 3.5: Recursive search in a binary search tree.

The analysis of the running time of this algorithm is simple. The binary tree

search algorithm executes a constant number of primitive operations for each node

it traverses in the tree. Each new step in the traversal is made on a child of the

previous node. That is, the binary tree search algorithm is performed on the nodes

of a path of T that starts from the root and goes down one level at a time. Thus, the
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number of such nodes is bounded by h + 1, where h is the height of T . In other

words, since we spend O(1) time per node encountered, the search method runs in

O(h) time, where h is the height of the binary search tree T . (See Figure 3.6.)

Figure 3.6: Illustrating the running time of searching in a binary search tree. The

figure uses standard visualization shortcuts of viewing a binary search tree as a big

triangle and a path from the root as a zig-zag line.

Admittedly, the height h of T can be as large as n, but we expect that it is usu-

ally much smaller. The best we can do for the height, h, is ⌈log(n + 1)⌉ (see Exer-

cise C-3.5), and we would hope that in most cases h would in fact be O(log n). For

instance, we show below, in Section 3.4, that a randomly constructed binary search

tree will have height O(log n) with high probability. For now, though, consider a

binary search tree, T , storing n items, such that, for each node v in T , each of v’s

children store at most three-quarters as many items in their subtrees as v does. Lots

of binary search trees could have this property, and, for any such tree, its height,

H(n), would satisfy the following recurrence equation:

H(n) ≤

{

1 if n < 2
H(3n/4) + 1 else.

In other words, a child of the root stores at most (3/4)n items in its subtree, any

of its children store at most (3/4)2n items in their subtrees, any of their children

store at most (3/4)3n items in their subtrees, and so on. Thus, since multiplying

by 3/4 is the same as dividing by 4/3, this implies that H(n) is at most ⌈log4/3 n⌉,

which is O(log n). Intuitively, the reason we achieve a logarithmic height for T
in this case is that the subtrees rooted at each child of a node in T have roughly

“balanced” sizes.

We show in the next chapter how to maintain an upper bound of O(log n) on

the height of a search tree T , by maintaining similar notions of balance, even while

performing insertions and deletions. Before we describe such schemes, however,

let us describe how to do insertions and deletions in a standard binary search tree.
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3.1.3 Insertion in a Binary Search Tree

Binary search trees allow implementations of the insert and remove operations

using algorithms that are fairly straightforward, but not trivial. To perform the

operation insert(k, e) in a binary search tree T , to insert a key-value pair, (k, e),
we perform the following algorithm (which works even if the tree holds multiple

key-value pairs with the same key):

Let w ← TreeSearch(k, T.root())
while w is an internal node do

// There is item with key equal to k in T in this case

Let w ← TreeSearch(k, T.leftChild(w))
Expand w into an internal node with two external-node children

Store (k, e) at w

The above insertion algorithm eventually traces a path from the root of T down

to an external node, w, which is the appropriate place to insert an item with key k
based on the ordering of the items stored in T . This node then gets replaced with a

new internal node accommodating the new item. Hence, an insertion adds the new

item at the “bottom” of the search tree T . An example of insertion into a binary

search tree is shown in Figure 3.7.

The analysis of the insertion algorithm is analogous to that for searching. The

number of nodes visited is proportional to the height h of T in the worst case, since

we spend O(1) time at each node visited. Thus, the above implementation of the

method insert runs in O(h) time.

97

44

17 88

32 65

54 8228

29
76

80

(a) (b)
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44

17 88

32 65

54 8228

29
76

80

78

Figure 3.7: Insertion of an item with key 78 into a binary search tree. Finding the

position to insert is shown in (a), and the resulting tree is shown in (b).
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3.1.4 Deletion in a Binary Search Tree

Performing a remove(k) operation, to remove an item with key k from a binary

search tree T is a bit more complex than the insertion algorithm, since we do not

wish to create any “holes” in the tree T . Such a hole, where an internal node would

not store an element, would make it difficult if not impossible for us to correctly

perform searches in the binary search tree. Indeed, if we have many removals that

do not restructure the tree T , then there could be a large section of internal nodes

that store no elements, which would confuse any future searches. Thus, we must

implement item deletion to avoid this situation.

The removal operation starts out simple enough, since we begin by execut-

ing algorithm TreeSearch(k, T.root()) on T to find a node storing key k. If

TreeSearch returns an external node, then there is no element with key k in T ,

and we return the special element null and are done. If TreeSearch returns an

internal node w instead, then w stores an item we wish to remove.

We distinguish two cases (of increasing difficulty) of how to proceed based on

whether w is a node that is easily removed:

• If one of the children of node w is an external node, say node z, we simply

remove w and z from T , and replace w with the sibling of z (which is an

operation called removeAboveExternal(z) in Section 2.3.4).

This case is illustrated in Figure 3.8.

97
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17 88

32 65

54 8228
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(a) (b)

w

z 97
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80
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Figure 3.8: Deletion from the binary search tree of Figure 3.7b, where the key to

remove (32) is stored at a node (w) with an external child: (a) shows the tree before

the removal, together with the nodes affected by the operation that removes the

external node, z, and its parent, w, replacing w with the sibling of z; (b) shows the

tree T after the removal.
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• If both children of node w are internal nodes, we cannot simply remove the

node w from T , since this would create a “hole” in T . Instead, we proceed

as follows (see Figure 3.9):

1. We find the first internal node y that follows w in an inorder traversal

of T . Node y is the left-most internal node in the right subtree of w,

and is found by going first to the right child of w and then down T from

there, following left children. Also, the left child x of y is the external

node that immediately follows node w in the inorder traversal of T .

2. We save the element stored at w in a temporary variable t, and move

the item of y into w. This action has the effect of removing the former

item stored at w.

3. We remove x and y from T by replacing y with x’s sibling, and

removing both x and y from T (which is equivalent to opera-

tion removeAboveExternal(x) on T , using the terminology of Sec-

tion 2.3.4).

4. We return the element previously stored at w, which we had saved in

the temporary variable t.
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w

y

x

Figure 3.9: Deletion from the binary search tree of Figure 3.7b, where the key to

remove (65) is stored at a node whose children are both internal: (a) before the

removal; (b) after the removal.

Note that in Step 1 above, we could have selected y as the right-most internal

node in the left subtree of w.

The analysis of the removal algorithm is analogous to that of the insertion and

search algorithms. We spend O(1) time at each node visited, and, in the worst case,

the number of nodes visited is proportional to the height h of T . Thus, in a binary

search tree, T , the remove method runs in O(h) time, where h is the height of T .
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3.1.5 The Performance of Binary Search Trees

A binary search tree T is an efficient implementation of an ordered set of n key-

value pairs but only if the height of T is small. For instance, if T is balanced so that

it has height O(log n), then we get logarithmic-time performance for the search

and update operations described above. In the worst case, however, T could have

height as large as n; hence, it would perform like an ordered linked list in this case.

Such a worst-case configuration arises, for example, if we insert a set of keys in

increasing order. (See Figure 3.10.)

10

20

30

40

Figure 3.10: Example of a binary search tree with linear height, obtained by insert-

ing keys in increasing order.

To sum up, we characterize the performance of the binary search tree data struc-

ture in the following theorem.

Theorem 3.1: A binary search tree T with height h for n key-element items uses

O(n) space and executes the operations find, insert, and remove each in O(h)
time.

Ideally, of course, we would like our binary search tree to have height O(log n),
and there are several ways to achieve this goal, including several that we explore in

the next chapter. For instance, as we explore in this chapter (in Section 3.4), if we

construct a binary search tree, T , by inserting a set of n items in random order, then

the height of T will be O(log n) with high probability. Alternatively, if we have

our entire set, S, of n items available, then we can sort S and build a binary search

tree, T , with height O(log n) from the sorted listing of S (see Exercise A-3.2).

In addition, if we already have a binary search tree, T , of O(log n) height, and

thereafter only perform deletions from T , then each of those deletion operations

will run in O(log n) time (although interspersing insertions and deletions can lead

to poor performance if we don’t have some way to maintain balance). There are a

number of other interesting operations that can be done using binary search trees,

however, besides simple searches and insertions and deletions.
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3.2 Range Queries

Besides the operations mentioned above, there are other interesting operations that

can be performed using a binary search tree. One such operation is the range

query operation, where, we are given an ordered set, S, of key-value pairs, stored

in a binary search tree, T , and are asked to perform the following query:

findAllInRange(k1, k2): Return all the elements stored in T with key k such that

k1 ≤ k ≤ k2.

Such an operation would be useful, for example, to find all cars within a given

price range in a set of cars for sale. Suppose, then, that we have a binary search

tree T representing S. To perform the findAllInRange(k1, k2) operation, we use a

recursive method, RangeQuery, that takes as arguments, k1 and k2, and a node v
in T . If node v is external, we are done. If node v is internal, we have three cases,

depending on the value of key(v), the key of the item stored at node v:

• key(v) < k1: We recursively search the right child of v.

• k1 ≤ key(v) ≤ k2: We report element(v) and recursively search both chil-

dren of v.

• key(v) > k2: We recursively search the left child of v.

We describe the details of this search procedure in Algorithm 3.11 and we illus-

trate it in Figure 3.12. We perform operation findAllInRange(k1, k2) by calling

RangeQuery(k1, k2, T.root()).

Algorithm RangeQuery(k1, k2, v):

Input: Search keys k1 and k2, and a node v of a binary search tree T
Output: The elements stored in the subtree of T rooted at v whose keys are in

the range [k1, k2]

if T.isExternal(v) then

return ∅
if k1 ≤ key(v) ≤ k2 then

L ← RangeQuery(k1, k2, T.leftChild(v))
R ← RangeQuery(k1, k2, T.rightChild(v))
return L ∪ {element(v)} ∪ R

else if key(v) < k1 then

return RangeQuery(k1, k2, T.rightChild(v))
else if k2 < key(v) then

return RangeQuery(k1, k2, T.leftChild(v))

Algorithm 3.11: The method for performing a range query in a binary search tree.
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12

18 55 81

99

68

23 42 74 90

21

37

49

61

30 80

Figure 3.12: A range query using a binary search tree for the keys k1 = 30 and k2 =
80. Paths P1 and P2 of boundary nodes are drawn with thick lines. The boundary

nodes storing items with key outside the interval [k1, k2] are drawn with dashed

lines. There are four internal inside nodes.

Intuitively, the method RangeQuery is a modification of the standard binary-

tree search method (Algorithm 3.5) to search for the keys between k1 and k2, inclu-

sive. For the sake of simplifying our analysis, however, let us assume that T does

not contain items with key k1 or k2.

Let P1 be the search path traversed when performing a search in tree T for

key k1. Path P1 starts at the root of T and ends at an external node of T . Define a

path P2 similarly with respect to k2. We identify each node v of T as belonging to

one of following three groups (see Figure 3.12):

• Node v is a boundary node if v belongs to P1 or P2; a boundary node stores

an item whose key may be inside or outside the interval [k1, k2].

• Node v is an inside node if v is not a boundary node and v belongs to a

subtree rooted at a right child of a node of P1 or at a left child of a node of P2;

an internal inside node stores an item whose key is inside the interval [k1, k2].

• Node v is an outside node if v is not a boundary node and v belongs to a sub-

tree rooted at a left child of a node of P1 or at a right child of a node of P2; an

internal outside node stores an item whose key is outside the interval [k1, k2].
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Analysis of the Range Query Operation

Consider an execution of the algorithm RangeQuery(k1, k2, r), where r is the root

of T . We traverse a path of boundary nodes, calling the algorithm recursively either

on the left or on the right child, until we reach either an external node or an internal

node w (which may be the root) with key in the range [k1, k2]. In the first case (we

reach an external node), the algorithm terminates returning the empty set. In the

second case, the execution continues by calling the algorithm recursively at both

of w’s children. We know that node w is the bottommost node common to paths

P1 and P2. For each boundary node v visited from this point on, we either make a

single call at a child of v, which is also a boundary node, or we make a call at one

child of v that is a boundary node and the other child that is an inside node. Once

we visit an inside node, we will visit all of its (inside node) descendants.

Since we spend a constant amount of work per node visited by the algorithm,

the running time of the algorithm is proportional to the number of nodes visited.

We count the nodes visited as follows:

• We visit no outside nodes.

• We visit at most 2h + 1 boundary nodes, where h is the height of T , since

boundary nodes are on the search paths P1 and P2 and they share at least one

node (the root of T ).

• Each time we visit an inside node v, we also visit the entire subtree Tv of

T rooted at v and we add all the elements stored at internal nodes of Tv

to the reported set. If Tv holds sv items, then it has 2sv + 1 nodes. The

inside nodes can be partitioned into j disjoint subtrees T1, . . . , Tj rooted at

children of boundary nodes, where j ≤ 2h. Denoting with si the number of

items stored in tree Ti , we have that the total number of inside nodes visited

is equal to

j
∑

i=1

(2si + 1) = 2s + j ≤ 2s + 2h.

Therefore, at most 2s + 4h + 1 nodes of T are visited and the operation

findAllInRange runs in O(h + s) time. We summarize:

Theorem 3.2: A binary search tree of height h storing n items supports range

query operations with the following performance:

• The space used is O(n).

• Operation findAllInRange takes O(h + s) time, where s is the number of

elements reported.

• Operations insert and remove each take O(h) time.
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3.3 Index-Based Searching

We began this chapter by discussing how to search in a sorted array, A, which

allows us to quickly identify the ith smallest item in the array simply by indexing

the cell A[i]. As we mentioned, a weakness of this array representation is that it

doesn’t support efficient updates, whereas a binary search tree allows for efficient

insertions and deletions. But when we switched to a binary search tree, we lost the

ability to quickly find the ith smallest item in our set. In this section, we show how

to regain that ability with a binary search tree.

Suppose, then, that we wish to support the following operation on a binary

search tree, T , storing n key-value pairs:

select(i): Return the item with ith smallest key, for 1 ≤ i ≤ n.

For example, if i = 1, then we would return the minimum item, if i = n, then we

would return the maximum, and if i = ⌈n/2⌉, then we would return the median

(assuming n is odd).

The main idea for a simple way to support this method is to augment each

node, v, in T so as to add a new field, nv, to that node, where

• nv is the number of items stored in the subtree of T rooted at v.

For instance, see Figure 3.13.

Figure 3.13: A binary search tree augmented so that each node, v, stores a count,

nv, of the number of items stored in the subtree rooted at v. We show the key for

each node inside that node and the nv value of each node next to the node, except

for external nodes, which each have an nv count of 0.
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Searching and Updating Augmented Binary Search Trees

Having defined the nv count for each node in a binary search tree, T , we need to

maintain it during updates to T . Fortunately, such updates are easy.

First, note that the nv count for any external node is 0, so we don’t even need

to store an actual nv field for external nodes (especially if they are null objects).

To keep the nv counts for internal nodes up to date, we simply need to modify the

insertion and deletion methods as follows:

• If we are doing an insertion at a node, w, in T (which was previously an

external node), then we set nw = 1 and we increment the nv count for each

node v that is an ancestor of w, that is, on the path from w to the root of T .

• If we are doing a deletion at a node, w, in T , then we decrement the nv count

for each node v that is on the path from w’s parent to the root of T .

In either the insertion or deletion case, the additional work needed to perform the

updates to nv counts takes O(h) time, where h is the height of T . This updating

takes an additional amount of time that is O(h), where h is the height of T , because

we spend an additional amount of O(1) time for each node from w to the root of T
in either case. (See Figure 3.14.)

Figure 3.14: A update in an a binary search tree augmented so that each node, v,

stores a count, nv, of the number of items stored in the subtree rooted at v. We show

the path taken, along with nv updates, during this update, which is an insertion of

a node with key 27 in the tree from Figure 3.13.



106 Chapter 3. Binary Search Trees

Let us consider how to perform method select(i) on a tree, T , augmented as

described above. The main idea is to search down the tree, T , while maintaining

the value of i so that we are looking for the ith smallest key in the subtree we are

still searching in. We do this by calling the TreeSelect(i, r, T ), shown in Algo-

rithm 3.15, where r is the root of T . Note that this algorithm assumes that the nv

count for any external node is 0. (See Figure 3.16.)

Algorithm TreeSelect(i, v, T ):

Input: Search index i and a node v of a binary search tree T
Output: The item with ith smallest key stored in the subtree of T rooted at v

Let w ← T.leftChild(v)
if i ≤ nw then

return TreeSelect(i, w, T )
else if i = nw + 1 then

return (key(v), element(v))
else

return TreeSelect(i − nw − 1, T.rightChild(v), T )

Algorithm 3.15: The TreeSelect algorithm.

The correctness of this algorithm follows from the fact that we are always main-

taining i to be the index of the ith smallest item in the subtree we are searching in,

so that the item returned will be the correct index. In particular, note that when we

recursively search in a right subtree, we first subtract the count of the number of

items stored in the left subtree and the parent. The running time for performing this

query is O(h), where h is the height of T , since we spend O(1) time per level of T
in our search to the node storing the ith smallest key.

Figure 3.16: A search for the 10th smallest item in a binary search tree augmented

so that each node, v, stores a count, nv, of the number of items stored in the subtree

rooted at v. We show the path taken during this search, along with the value, i, that

is maintained during this search.
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3.4 Randomly Constructed Search Trees

Suppose we construct a binary search tree, T , by a sequence of insertions of n
distinct, random keys. Since the only thing that impacts the structure of T is the

relative order of the keys, we can assume, without loss of generality, that the keys

involved are the integers from 1 to n. That is, we can assume that we are given a

random permutation, P , of the keys in the set {1, 2, . . . , n}, where all permutations

are equally likely, and are asked to build the binary search tree, T , by inserting the

keys in P in the given order.

Let vj denote the node in T that holds the item with key j, and let D(vj) denote

the depth of vj in T . Note that D(vj) is a random variable, since T is constructed

at random (based on P ). Define Xi,j to be a 0-1 indicator random variable that is

equal to 1 if and only if vi is an ancestor of vj , where, for the sake of this analysis,

we consider a node to be an ancestor of itself. That is, Xi,i = 1. We can write

D(vj) =
n

∑

i=1

Xi,j − 1,

since the depth of a node is equal to the number of its proper ancestors. Thus, to de-

rive a bound on the expected value of D(vj), we need to determine the probability

that Xi,j is 1.

Lemma 3.3: The node vi is an ancestor of the node vj in T if and only if i appears

earliest in P of any integer in Ri,j , the range of integers between i and j, inclusive.

Proof: If i appears earliest in P of any integer in Ri,j , then, by definition, it is

inserted into T before any of these integers. Thus, at the time when j is inserted

into T , and we perform j in T , we must encounter the node vi as our depth D(vi)
comparison, since there is no other element from Ri,j at a higher level in T .

Suppose, on the other hand, that i appears earliest in P of any integer in Ri,j .

Then i is inserted into T before any item with a key in this range; hence, for the

search for j, we will encounter vi at some point along the way, since j has to be

located into this interval and, at the depth of vi, there is no other element from Ri,j

to use as a comparison key.

This fact allows us to then derive the probability that any Xi,j is 1, as follows.

Lemma 3.4: Let Xi,j be defined as above. Then Pr(Xi,j = 1) = 1/(|i−j|+1).

Proof: There are |i − j| + 1 items in the range from i to j, inclusive, and the

probability that i appears earliest in P of all of them is 1 over this number, since

all the numbers in this range have an equal and independent probability of being

earliest in P . The proof follows, then, from this fact and Lemma 3.3.
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An Analysis Based on Harmonic Numbers

In addition to the above lemmas, our analysis of a randomly constructed binary

search tree also involves harmonic numbers. For any integer n ≥ 1, we define the

nth harmonic number, Hn, as

Hn =
n

∑

i=1

1

i
,

for which it is well known that Hn is O(log n). In fact,

lnn ≤ Hn ≤ 1 + lnn,

as we explore in Exercise C-3.11.

Harmonic numbers are important in our analysis, because of the following.

Lemma 3.5:

E[D(vj)] ≤ Hj + Hn−j+1 − 1.

Proof: To see this relationship, note that, by the linearity of expectation,

E[D(vj)] =
n

∑

i=1

E[Xi,j ] − 1

=

j
∑

i=1

E[Xi,j ] +
n

∑

i=j+1

E[Xi,j ] − 1

=

j
∑

i=1

1

j − i + 1
+

n
∑

i=j+1

1

i − j + 1
− 1

≤

j
∑

k=1

1

k
+

n−j+1
∑

k=1

1

k
− 1

= Hj + Hn−j+1 − 1.

So, in other words, the expected depth of any node in a randomly constructed

binary search tree with n nodes is O(log n). Or, put another way, the average depth

of the nodes in a randomly constructed binary search tree is O(log n).

Bounding the Overall Height with High Probability

In addition to the above bound for the average depth of a randomly constructed

binary search tree, we might also be interested in bounding the overall height of

such a tree, T , which is equal to the maximum depth of any node in T . In order to

analyze this maximum depth of a node in T , let us utilize the following Chernoff

bound (see Exercise C-19.14).
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Let X1, X2, . . . , Xn be a set of mutually independent indicator random vari-

ables, such that each Xi is 1 with some probability pi > 0 and 0 otherwise. Let

X =
∑n

i=1 Xi be the sum of these random variables, and let µ′ denote an upper

bound on the mean of X , that is, E(X) ≤ µ′. Then, for δ > 0,

Pr(X > (1 + δ)µ′) <

[

eδ

(1 + δ)(1+δ)

]µ′

.

Using this bound, we can derive the following theorem.

Theorem 3.6: If T is a randomly constructed binary search tree with n > 4
nodes, then the height of T is O(log n) with probability at least 1 − 1/n.

Proof: Recall that D(vj) =
∑n

i=1 Xi,j − 1. Let Lj =
∑j−1

i=1 Xi,j denote

the “left” part of this sum and Rj =
∑n

i=j+1 Xi,j denote the “right” part, with

both leaving off the term Xj,j . Then D(vj) = Lj + Rj . So, by symmetry, it is

sufficient for us to bound Rj , since a similar bound will hold for Lj . The important

observation is that all of the Xi,j terms in the definition of Rj are independent 0-1

random variables. This independence is due to the fact that whether i is chosen first

in P from {j, j + 1, . . . , i} has no bearing on whether i + 1 is chosen first in P
from {j, j + 1, . . . , i, i + 1}. Moreover, E[Rj ] = Hn−j+1 ≤ Hn. Thus, by the

above Chernoff bound, for n > 4,

Pr(Rj > 4Hn) <

[

e3

44

]Hn

≤
1

n2.5
,

since Hn ≥ lnn. Therefore, Pr(D(vj) > 8Hn) ≤ 2/n2.5, which implies that

the probability that any node in T has depth more than 8Hn is at most 2n/n2.5 =
2/n1.5. Since n > 4 and Hn is O(log n), this establishes the theorem.

So, if we construct a binary search tree, T , by inserting a set of n distinct items

in random order, then, with high probability, the height of T will be O(log n).

The Problem with Deletions

Unfortunately, if we intersperse random insertions with random deletions, using the

standard insertion and deletion algorithms given above, then the expected height of

the resulting tree is Θ(n1/2), not O(log n). Indeed, it has been reported that a major

database company experienced poor performance of one its products because of an

issue with maintaining the height of a binary search tree to be O(log n) even while

allowing for deletions. Thus, if we are hoping to achieve O(log n) depth for the

nodes in a binary search tree that is subject to both insertions and deletions, even

if these operations are for random keys, then we need to do more than simply

performing the above standard insertion and deletion operations. For example, we

could use one of the balanced search tree strategies discussed in the next chapter.
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3.5 Exercises

Reinforcement

R-3.1 Suppose you are given the array A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], and you

then perform the binary search algorithm given in this chapter to find the number

8. Which numbers in the array A are compared against the number 8?

R-3.2 Insert items with the following keys (in the given order) into an initially empty

binary search tree: 30, 40, 50, 24, 8, 58, 48, 26, 11, 13. Draw the tree that

results.

R-3.3 Suppose you have a binary search tree, T , storing numbers in the range from 1 to

500, and you do a search for the integer 250. Which of the following sequences

are possible sequences of numbers that were encountered in this search. For the

ones that are possible, draw the search path, and, for the ones that are impossible,

say why.

a. (2, 276, 264, 270, 250)

b. (100, 285, 156, 203, 275, 250)

c. (475, 360, 248, 249, 251, 250)

d. (450, 262, 248, 249, 270, 250)

R-3.4 Suppose T is a binary search tree of height 4 (including the external nodes) that is

storing all the integers in the range from 1 to 15, inclusive. Suppose further that

you do a search for the number 11. Explain why it is impossible for the sequence

of numbers you encounter in this search to be (9, 12, 10, 11).

R-3.5 Draw the binary search trees of minimum and maximum heights that store all the

integers in the range from 1 to 7, inclusive.

R-3.6 Give a pseudocode description of an algorithm to find the element with smallest

key in a binary search tree. What is the running time of your method?

R-3.7 Draw the binary search tree that results from deleting items with keys 17, 28, 54,

and 65, in this order, from the tree shown in Figure 3.7b.

R-3.8 A certain Professor Amongus claims that the order in which a fixed set of ele-

ments is inserted into a binary search tree does not matter—the same tree results

every time. Give a small example that proves Professor Amongus wrong.

R-3.9 Suppose you are given a sorted set, S, of n items, stored in a binary search tree.

How many different range queries can be done where both of the values, k1 and

k2, in the query range [k1, k2] are members of S?

R-3.10 Suppose that a binary search tree, T , is constructed by inserting the integers from

1 to n in this order. Give a big-Oh characterization of the number of comparisons

that were done to construct T .

R-3.11 Suppose you are given a binary search tree, T , which is constructed by inserting

the integers in the set {1, 2, . . . , n} in a random order into T , where all permu-

tations of this set are equally likely. What is the average running time of then

performing a select(i) operation on T ?
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R-3.12 If one has a set, S, of n items, where n is even, then the median item in S is the

average of the ith and (i + 1)st smallest elements in S, where i = n/2. Describe

an efficient algorithm for computing the median of such a set S that is stored in

a binary search tree, T , where each node, v, in T is augmented with a count, nv ,

which stores the number of items stored in the subtree of T rooted at v.

R-3.13 What is H5, the 5th harmonic number?

Creativity

C-3.1 Suppose you are given a sorted array, A, of n distinct integers in the range from

1 to n + 1, so there is exactly one integer in this range missing from A. Describe

an O(log n)-time algorithm for finding the integer in this range that is not in A.

C-3.2 Let S and T be two ordered arrays, each with n items. Describe an O(log n)-
time algorithm for finding the kth smallest key in the union of the keys from S
and T (assuming no duplicates).

C-3.3 Describe how to perform the operation findAllElements(k), which returns every

element with a key equal to k (allowing for duplicates) in an ordered set of n key-

value pairs stored in an ordered array, and show that it runs in time O(log n+ s),
where s is the number of elements returned.

C-3.4 Describe how to perform the operation findAllElements(k), as defined in the

previous exercise, in an ordered set of key-value pairs implemented with a binary

search tree T , and show that it runs in time O(h + s), where h is the height of T
and s is the number of items returned.

C-3.5 Prove, by induction, that the height of a binary search tree containing n items is

at least ⌈log(n + 1)⌉.

C-3.6 Describe how to perform an operation removeAllElements(k), which removes

all key-value pairs in a binary search tree T that have a key equal to k, and show

that this method runs in time O(h + s), where h is the height of T and s is the

number of items returned.

C-3.7 Let S be an ordered set of n items stored in a binary search tree, T , of height h.

Show how to perform the following method for S in O(h) time:

countAllInRange(k1, k2): Compute and return the number of items in S with

key k such that k1 ≤ k ≤ k2.

C-3.8 Describe the structure of a binary search tree, T , storing n items, such that T has

height Ω(n1/2) yet the average depth of the nodes in T is O(log n).

C-3.9 Suppose n key-value pairs all have the same key, k, and they are inserted into an

initially empty binary search tree using the algorithm described in Section 3.1.3.

Show that the height of the resulting tree is Θ(n). Also, describe a modifica-

tion to that algorithm based on the use of random choices and show that your

modification results in the binary search tree having height O(log n) with high

probability.



112 Chapter 3. Binary Search Trees

C-3.10 Suppose that each row of an n × n array A consists of 1’s and 0’s such that, in

any row of A, all the 1’s come before any 0’s in that row. Assuming A is already

in memory, describe a method running in O(n log n) time (not O(n2) time!) for

counting the number of 1’s in A.

C-3.11 (For readers familiar with calculus): Use the fact that, for a decreasing integrable

function, f ,

∫ b+1

x=a

f(x)dx ≤
b

∑

i=a

f(i) ≤

∫ b

x=a−1

f(x)dx,

to show that, for the nth harmonic number, Hn,

lnn ≤ Hn ≤ 1 + lnn.

C-3.12 Without using calculus (as in the previous exercise), show that, if n is a power of

2 greater than 1, then, for Hn, the nth harmonic number,

Hn ≤ 1 + Hn/2.

Use this fact to conclude that Hn ≤ 1 + ⌈log n⌉, for any n ≥ 1.

Applications

A-3.1 Suppose you are asked to automate the prescription fulfillment system for a phar-

macy, MailDrugs. When an order comes in, it is given as a sequence of requests,

“x1 ml of drug y1,” “x2 ml of drug y2,” “x3 ml of drug y3,” and so on, where

x1 < x2 < x3 < · · · < xk. MailDrugs has a practically unlimited supply of

n distinctly sized empty drug bottles, each specified by its capacity in milliliters

(such 150 ml or 325 ml). To process a drug order, as specified above, you need to

match each request, “xi ml of drug yi,” with the size of the smallest bottle in the

inventory than can hold xi milliliters. Describe how to process such a drug order

of k requests so that it can be fulfilled in O(k log(n/k)) time, assuming the bottle

sizes are stored in an array, T , ordered by their capacities in milliliters.

A-3.2 Imagine that you work for a database company, which has a popular system for

maintaining sorted sets. After a negative review in an influential technology web-

site, the company has decided it needs to convert all of its indexing software from

using sorted arrays to an indexing strategy based on using binary search trees, so

as to be able to support insertions and deletions more efficiently. Your job is to

write a program that can take a sorted array, A, of n elements, and construct a

binary search tree, T , storing these same elements, so that doing a binary search

for any element in T will run in O(log n) time. Describe an O(n)-time algorithm

for doing this conversion.
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A-3.3 Suppose you work for a computer game company, which is designing a first per-

son shooting game. In this game, players stand just outside of a circular playing

field and shoot at targets inside the circle. There are a lot of players and tar-

gets, however, so, for any given player, it only makes sense to display the targets

that are close by that player. Thus, whenever a new target, t, appears, the game

should only make it visible to the players that are in the same “zone” as t. In

order to support the fast processing of such queries, you offer to build a binary

space partitioning (BSP) tree, T , for use in the game engine. You are given the

(x, y) coordinates of all n players, which are in no particular order, but are con-

strained to all lie at different locations on a circle, C. Your job is to design an

efficient algorithm for building such a BSP tree, T , so that its height is O(log n).
Thus, the root, r, of T is associated with a line, L, that divides the set of play-

ers into two groups of roughly equal size. Then, it should recursively partition

each group into two groups of roughly equal size. Describe an O(n log n)-time

algorithm for constructing such a tree T . (See Figure 3.17.)

Figure 3.17: A circular environment for a first-person shooter game, where players

are represented as points (labeled with letters), together with a two-dimensional

BSP tree for this configuration, where dividing lines and nodes are similarly num-

bered.

A-3.4 It is sometimes necessary to send a description of a binary search tree in text

form, such as in an email or text message. Since it is a significant challenge to

draw a binary search tree using text symbols, it is useful to have a completely

textural way of representing a binary search tree. Fortunately, the structure of a

binary search tree is uniquely determined by labeling each node with its preorder

and postorder numbers. Thus, we can build a textural representation of a binary

search tree T by listing its nodes sorted according to their preorder labels, and

listing each node in terms of its contents and its postorder label. For example,

the tree of Figure 3.10 would be represented as the string,

[(10, 9), (∅, 1), (20, 8), (∅, 2), (30, 7), (∅, 3), (40, 6), (∅, 5), (∅, 6)].
Describe an O(n) time method for converting an n-node binary search tree, T ,

into such a textural representation.

A-3.5 Consider the reversal of the problem from the previous exercise. Now you are

the recipient of such a message, containing a textural representation of a binary

search tree as described in the previous exercise. Describe an algorithm running

in O(n log n) time, or better, for reconstructing the binary search tree, T , that is
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represented in this message.

A-3.6 Suppose you are building a first-person shooter game, where virtual zombies are

climbing up a wall while the player, who is moving left and right in front of the

wall, is trying to knock them down using various weapons. The position of each

zombie is represented with a pair, (x, y), where x is the horizontal position of the

zombie and y is its height on the wall. The player’s position is specified with just

a horizontal value, xp. One of the weapons that a player can use is a bomb, which

kills the zombie that is highest on the wall from all those zombies within a given

horizontal distance, r, of xp. Suppose the zombies are stored in a binary search

tree, T , of height h, ordered in terms of their horizontal positions. Describe

a method for augmenting T so as to answer maximum-zombie queries in O(h)
time, where such a query is given by a range [xp−r, xp+r] and you need to return

the coordinates of the zombie with maximum y-value whose horizontal position,

x, is in this range. Describe the operations that must be done for inserting and

deleting zombies as well as performing maximum-zombie queries.

A-3.7 The first-century historian, Flavius Josephus, recounts the story of how, when his

band of 41 soldiers was trapped by the opposing Roman army, they chose group

suicide over surrender. They collected themselves into a circle and repeatedly put

to death every third man around the circle, closing up the circle after every death.

This process repeated around the circle until the only ones left were Josephus and

one other man, at which point they took a new vote of their group and decided

to surrender after all. Based on this story, the Josephus problem involves con-

sidering the numbers 1 to n arranged in a circle and repeatedly removing every

mth number around the circle, outputting the resulting sequence of numbers. For

example, with n = 10 and m = 4, the sequence would be

4, 8, 2, 7, 3, 10, 9, 1, 6, 5.

Given values for n and m, describe an algorithm for outputting the sequence

resulting from this instance of the Josephus problem in O(n log n) time.

Chapter Notes

Interestingly, the binary search algorithm was first published in 1946, but was not pub-

lished in a fully correct form until 1962. For some lessons to be learned from this history,

please see the related discussions in Knuth’s book [131] and the papers by Bentley [28] and

Levisse [142]. Another excellent source for additional material about binary search trees is

the book by Mehlhorn in [157]. In addition, the handbook by Gonnet and Baeza-Yates [85]

contains a number of theoretical and experimental comparisons among binary search tree

implementations. Additional reading can be found in the book by Tarjan [207], and the

chapter by Mehlhorn and Tsakalidis [160].

Our analysis of randomly constructed binary search trees is based on the analysis of

randomized search trees by Seidel and Aragon [191]. The analysis that a random sequence

of insertions and deletions in a standard binary search tree can lead to it having Θ(n1/2)
depth is due to Culberson and Munro [53]. The report of a database company that expe-

rienced poor performance of one of its products due to an issue with how to maintain a

balanced binary search tree subject to insertions and deletions is included in a paper by Sen

and Tarjan [193].


